Vor 30+ Tagen

Master Thesis: Modelling of next-generation MEMS microphones for hearing aids

  • München
  • Vollzeit
Vor Ort
Sitemap >Schwarzes Brett >Studentische Hilfskräfte, Praktikantenstellen, Studienarbeiten > Master Thesis: Modelling of next-generation MEMS microphones for hearing aids
Zurück zu Nachrichten-Bereich Browse in News

Master Thesis: Modelling of next-generation MEMS microphones for hearing aids

2D axisymmetric membrane model

17.04.2024, Studentische Hilfskräfte, Praktikantenstellen, Studienarbeiten

We are looking for students who like to work in an interdisciplinary team and intend to realize their master's thesis within our group at Professorship of Microsensors and Actuators embedded in the EU project Listen2Future. Topic Advances in material science have enabled the use of piezoelectric materials in MEMS microphones. In contrast to commonly used capacitive MEMS microphones, piezoelectric microphones require less energy and are, therefore, useful for mobile applications such as hearing aids. Another advantage of the piezoelectric microphone is the linear relationship between electrical voltage and force. This simplifies force-feedback control of the sensor and thus opens the possibility of increasing the sensor performance even more. Crucial for this is the design of the microphone membrane. Therefore, highly accurate models must be set up to simulate the microphone behavior. Within this Master Thesis, you will set up a shell model of the microphone membrane to obtain a complete 3D model. Currently, a 2D axisymmetric FEM model is available, which cannot cover the full 3D behavior. A shell model could simulate additional resonance modes and promising membrane designs for force-feedback control. Simulation is done in COMSOL Multiphysics, the gold standard software to simulate the coupling of different en-ergy domains. Work packages • Topic familiarization and literature survey • Familiarization with COMSOL Multiphysics • Setting up a shell model of the piezoelectric microphone membrane • Comparison with the existing 2D axisymmetric model • Investigation of new membrane designs for force-feedback control • Documentation and presentation of the results Requirements Background in one of the following fields: • Electrical Engineering • Mechanical Engineering • Physics • Materials Science • Related fields of study Timetable The thesis can be started immediately. Contact Til Friebe, M.Sc. Doctoral Candidate Phone: +49 89 28923129 Email: til.friebe@tum.de

Topic
Advances in material science have enabled the use of piezoelectric materials in MEMS microphones. In contrast to commonly used capacitive MEMS microphones, piezoelectric microphones require less energy and are, therefore, useful for mobile applications such as hearing aids. Another advantage of the piezoelectric microphone is the linear relationship between electrical voltage and force. This simplifies force-feedback control of the sensor and thus opens the possibility of increasing the sensor performance even more. Crucial for this is the design of the microphone membrane. Therefore, highly accurate models must be set up to simulate the microphone behavior.

Within this Master Thesis, you will set up a shell model of the microphone membrane to obtain a complete 3D model. Currently, a 2D axisymmetric FEM model is available, which cannot cover the full 3D behavior. A shell model could simulate additional resonance modes and promising membrane designs for force-feedback control.
Simulation is done in COMSOL Multiphysics, the gold standard software to simulate the coupling of different energy domains.

Work packages
· Topic familiarization and literature survey
· Familiarization with COMSOL Multiphysics
· Setting up a shell model of the piezoelectric microphone membrane
· Comparison with the existing 2D axisymmetric model
· Investigation of new membrane designs for force-feedback control
· Documentation and presentation of the results

Requirements Background in one of the following fields:
· Electrical Engineering
· Mechanical Engineering
· Physics
· Materials Science
· Related fields of study


The thesis can be started immediately.

Contact
Til Friebe, M.Sc.
Doctoral Candidate
Phone: +49 89 28923129
Email: til.friebe@tum.de

Kontakt: til.friebe@tum.de

Unternehmensdetails

company logo

Technische Universität München

Fach- und Hochschulen

5.001 - 10.000 Mitarbeitende

München, Deutschland

Bewertung von Mitarbeitenden

Vorteile für Mitarbeitende

Flexible Arbeitszeiten

Kantine

Kinderbetreuung

Betriebliche Altersvorsorge

Privat das Internet nutzen

Unternehmenskultur

Technische Universität München

Branchen-Durchschnitt

Unternehmenskultur

77 Mitarbeitende haben abgestimmt: Sie bewerten die Unternehmenskultur bei Technische Universität München als eher traditionell. Der Branchen-Durchschnitt geht übrigens in Richtung modern.

Mehr Infos anzeigen

Wir benachrichtigen Dich gerne über ähnliche Jobs in München:

Ähnliche Jobs

Technical University of Munich

Postdoctoral Researcher (m/f/d)

München

Technical University of Munich

53.500 €64.500 €

Vor 6 Tagen

Technische Universität München

PhD/Postdoctoral Researcher (m/f/d)

München

Technische Universität München

3.4
47.000 €59.000 €

Vor 30+ Tagen

Fraunhofer-Gesellschaft

Student assistant performing OpenFOAM CFD simulations in the field of urban microclimate modeling

Valley

Fraunhofer-Gesellschaft

3.6

Vor 16 Tagen

Audi AG

Praktikum - EMV Untersuchungen auf Komponenten- und Fahrzeugebene

Ingolstadt

Audi AG

3.9

Vor 11 Tagen

Airbus

Master Thesis (d/f/m) within the field of Situational Awareness

Donauwörth

Airbus

3.8

Vor 6 Tagen

agco

Abschlussarbeit im Bereich CFD-DEM Simulation (WiSe 24/25)

Marktoberdorf

agco

Vor 30+ Tagen

Audi AG

Praktikum - Entwicklung Fußgänger- und Radfahrerschutz

Ingolstadt

Audi AG

3.9

Vor 6 Tagen

Audi AG

Praktikum - Einsatz von (Model-based) Systems Engineering im X-in-the-Loop-Umfeld

Ingolstadt

Audi AG

3.9

Vor 11 Tagen

Master’s student

Zürich

IBM Zurich Research Laboratory

Vor 8 Tagen